Ваш урожай
Назад

Провод молниеотвода

Опубликовано: 09.03.2020
Время на чтение: 33 мин
0
12

Какую опасность представляет неправильно построенный молниеотвод

Облака представляют собой водяной пар или мелкие кристаллы льда. Они постоянно движутся, трутся о теплые струи воздуха и электризуются. Когда разность зарядов между ними достигает критического значения, происходит разряд. Это и есть молния.

Когда между облаком и землей проводимость наименьшая, то молния ударяет в землю, весь накопленный заряд стекает в нее. Затем и нужно заземление, чтобы забрать на себя энергию разряда.

Молния ударяет в самую высокую точку сооружения, проходя минимальное расстояние от облака до объекта. По сути, получается короткое замыкание, протекают гигантские токи, выделяется огромная энергия.

Если молниезащита отсутствует, то вся энергия молнии воспринимается зданием и растекается по токопроводящим конструкциям. Последствия такого удара – пожары, поражения людей, выход из строя электротехники.

Чаще всего знания о том, как работает молниеотвод, сводятся к нескольким общеизвестным фактам:

  • Молния ударяет во время прохождения грозового фронта над местностью с переменным рельефом или большим количеством деревьев, построек или плотной застройкой зданий и высотных объектов;
  • Металлические предметы, техника и строительное оборудование, вышки и высокие деревья чаще всего становятся объектом удара молнии;
  • Единственной возможностью безопасно компенсировать удар молнии является эффективное заземление молниеотвода.

В модели молнии принято, что электрический разряд начинается в грозовых облаках, и при ударе светящийся лидер направляется к поверхности земли. Принцип работы молниеотвода сводится к тому, чтобы переключить электрический удар на специальную проводную шину, отправляющую заряд молнии глубоко в землю.

Провод молниеотвода

К сведению! Для человека главным условием защиты от удара молнией является отсутствие гальванической связи с мокрым грунтом, сухая одежда, и главное — наличие рядом предметов, способных выполнить функции молниеотвода.

Сегодня даже школьник знает, из чего состоит молниеотвод фото. Самая простая конструкция защиты от удара молнии строится на основе трех базовых частей:

  • Молниеприемника или оголовника молниеотвода, на который и приходится удар электрического разряда молнии;
  • Токопроводящего контура из толстой стальной шины или нескольких медных проводов большого сечения;
  • Системы заземления удара и рассеивания разряда молнии.

Основным условием эффективной защиты от ударов молнии является правильный подбор сечения металла шины, установка молниеотвода на оптимальной высоте и безопасное обустройство заземления. Не стоит обольщаться простотой и даже примитивностью его устройства. При несоблюдении простейших правил стальной каркас и шина молниеотвода могут быть не менее опасными, чем собственно удар молнии.

В том, что система защиты от удара молнии может представлять огромную опасность для жизни человека, электронных приборов, систем электроснабжения и даже для просто находящихся рядом людей и животных, нет ни капли преувеличения.

Во время удара молнии в оголовок приходит электрический заряд 150-200 Кл или несколько сот киловатт электроэнергии. Этого достаточно, чтобы пережечь стальную шину защиты сечением в 100-150 мм2 или зажечь стропильный каркас крыши, испарить 200-250 литров воды. После удара молнии пришедшие заряды в молниеотводе никуда не деваются, на какую-то тысячную долю секунды система защиты работает, как гигантский конденсатор.

Важно! Стоит помнить, что энергия в сотни киловатт не может рассеяться в доли секунды после удара лидера молнии. Еще как минимум 3-5 сек. система разряжается. Если в это время коснуться частей молниеотвода рукой, то удар током может привести к тяжелым последствиям.

Если заземление молниеотвода построено правильно, то практически вся энергия заряда молнии стекает в поверхностный слой грунта. Процесс стекания заряда очень сложен, и точно сказать, как именно будут двигаться заряды от оголовника до заземляющей части молниеотвода, практически невозможно. Если токопроводящая шина обладает повышенным сопротивлением движению зарядов, то часть энергии может разрядиться на проходящую рядом электропроводку, телефонные линии, металлические детали крыши и каркаса здания.

Электричество может пройти даже по арматуре железобетона или мокрой штукатурке. В результате удара молнии может произойти скачок напряжения в электросети, возгорание деревянных или пластиковых деталей здания. Если в момент электроразряда произойдет перегорание шины, то ток пойдет в землю по всем ближайшим проводящим поверхностям, даже если нет непосредственного контакта с заземляющим проводником.

Еще более тяжелые последствия могут наступить, если рядом с шиной и металлом заземления находится человек. Даже если шина и заземляющая часть молниеотвода исправны, часть заряда молнии разряжается через влажный воздух и ближайшие проводящие детали. Последствия для человека могут быть такими же, как если бы он стоял под деревом, в которое пришелся удар молнии.

Провод молниеотвода

Кроме того, в момент распространения разряда в грунте на доли секунды возникает шаговое напряжение, представляющее не меньшую опасность, чем собственно сам электрический разряд. Поэтому пешеход, двигаясь по дорожке в непосредственной близости к контуру заземления, имеет все шансы получить сильнейший электрический разряд. Статистика знает случаи, когда во время удара молнии боковой разряд перескакивал с шины на металлические детали зонтика.

Зачем нужно объединение контуров заземления?

При попадании молнии в молниеотвод в последнем возникает короткий электрический импульс напряжением до сотен киловольт. При столь высоком напряжении может произойти пробой промежутка между молниеотводом и металлическими конструкциями дома, в том числе и электрическими кабелями. Последствием этого станет возникновение неконтролируемых токов, которые могут привести к пожару, выходу электроники из строя и даже разрушению элементов инфраструктуры (например, пластиковых водопроводных труб). Опытные электрики говорят: «Дайте молнии дорогу, иначе она найдет ее сама». Вот почему электрическое объединение заземлений обязательно.

По этой же причине ПУЭ рекомендует электрически объединять не только заземления, находящиеся в одном здании, но и заземления территориально сближенных объектов. Под данным понятием подразумеваются объекты, заземления которых настолько сближены, что между ними нет зоны нулевого потенциала. Объединение нескольких заземлений в одно осуществляется, согласно нормам ПУЭ-7, п. 1.7.

Что происходит во время грозы и удара молнии

Процесс образования электрического разряда в землю достаточно сложен и плохо предсказуем. Даже современная техника и методы расчета не могут указать на место удара молнии. Поэтому принцип действия молниеотвода строится на так называемой инициализации или провокации разряда молнии.

С первыми признаками грозы за счет мощного электрического поля в воздухе над высокими объектами, антеннами и оголовками молниеотводов резко увеличивается количество положительных зарядов. Еще нет грозы и ударов молнии, а над верхушками уже скопились огромные облака из заряженных ионов. Источником стекающих вверх зарядов является поверхность земли.

Любой человек может даже почувствовать запах этих зарядов, всем известно, как перед грозой усиливается влажность, выразительнее становятся запахи растительности и сырой земли. Если коснуться своими руками молниеотвода, то можно испытать небольшой удар током.

Так как молниеотвод соединен с грунтом, то вокруг оголовка и шины молниеотвода скапливается самый большой потенциал зарядов, поэтому удар молнии приходится именно в металлические части защиты, а не в крышу или соседний дом.

В некоторых случаях молниеотводы и шины дополнительно оборудуют грозовыми разрядниками или вентильной защитой. По сути, это контур, согнутый из шины в виде кольца или эллипса с разрывом. По мере увеличения напряженности поля накопившийся заряд разряжается на контуре, тем самым уменьшает вероятность удара молнии именно в этот объект.

Одно общее или отдельные заземляющие устройства?

К заземлителям для электрических установок и молниезащиты предъявляются разные требования, и это обстоятельство может стать источником некоторых проблем. Заземлитель для молниезащиты должен отвести в землю за короткое время большой электрический заряд. При этом согласно «Инструкции по молниезащите РД 34.21.

122-87» нормируется конструктив заземлителя. Для молниеотвода, согласно этой инструкции, требуется не менее двух вертикальных, или лучевых горизонтальных, заземлителей, за исключением 1 категории молниезащиты, когда таких штырей нужно три. Вот почему наиболее распространенный вариант  заземления для молниеотвода — два или три штыря длиной около 3 м каждый, соединенных металлической полосой, заглубленной не менее чем на 50 см в землю. При использовании деталей производства ZANDZ такой заземлитель получается долговечным и простым в монтаже.

Совсем другое дело — заземление для электрических установок. В обычном случае оно не должно превышать 30 Ом, а для ряда применений, описанных в ведомственных инструкциях, например, для аппаратуры сотовой связи — 4 Ом или еще меньше. Такие заземлители представляют собой штыри длиной более 10 м или даже металлические пластины, помещенные на большую глубину (до 40 м), где даже зимой нет промерзания грунта. Создать такой молниеотвод с заглублением двух и более элементов на десятки метров слишком затратно.

Предлагаем ознакомиться  Отделка и облицовка столбов забора из натурального и декоративного искусственного камня

Если параметры грунта и предъявляемые к сопротивлению требования позволяют выполнить единое заземление в здании для молниеотвода и заземления электрических установок, нет никаких препятствий его сделать. В остальных случаях делают различные контуры заземления для молниеотвода и электрических установок, но обязательно соединяют их электрически, желательно, в земле.

Исключением является использование некоторого специального оборудования особенно чувствительного к помехам. Например, звукозаписывающая аппаратура. Такое оборудование требует отдельного, так называемого, технологического заземляющего устройства, что прямым образом указывается в инструкциях. В таком случае выполняется отдельное заземляющее устройство, которое соединяется с системой уравнивания потенциалов здания через главную заземляющую шину.

Электрическое соединение заземлений

Схема с несколькими заземлениями, соединенными электрически, обеспечивает выполнение разных, подчас противоречивых, требований к заземляющим устройствам. Согласно ПУЭ, заземления, как и многие другие металлические элементы здания, а также аппаратуры, установленной в нем, должны быть соединены системой уравнивания потенциалов.

Провод молниеотвода

Под уравниванием потенциалов подразумевается электрическое соединение проводящих частей для достижения равенства потенциалов. Различают основную и дополнительную системы уравнивания потенциалов. Заземления подключаются к основной системе уравнивания потенциалов, то есть соединяются между собой через главную заземляющую шину.

Для того, чтобы обеспечивалась безопасная работа всей системы, очень важно использовать максимально надежное соединение между заземлениями и главной заземляющей шиной, которое не разрушится под действием молнии. Для этого нужно соблюдать нормы ПУЭ и ГОСТ Р 50571.5.54-2013 “Электроустановки низковольтные. Часть 5-54.

Тем не менее, даже очень качественная система уравнивания потенциалов не может гарантировать отсутствие всплесков напряжения в сети при ударе молнии в здание. Поэтому, наряду с грамотно спроектированными контурами заземлений, от проблем спасут устройства защиты от импульсных помех (УЗИП). Такая защита является многоступенчатой и носит селективный характер.

Выводы

Рекомендация ПУЭ об электрическом соединении всех контуров заземлений в здании является обоснованной и при правильной реализации не только не создает опасность для сложной электронной аппаратуры, а, наоборот, защищает ее. В том случае, если аппаратура чувствительна к помехам от молний и требует собственного отдельного заземлителя, можно установить отдельное технологическое заземление в соответствии с прилагаемому к аппаратуре руководству.

Требования к сопротивлению

Rз – сопротивление заземлителя, а ρ – удельное сопротивление грунта.

Провод молниеотвода

Для достижения нормативного значения иногда заменяется грунт. Выкапывается траншея, закладывается новый грунт с соответствующими характеристиками, и после этого монтируется заземление. Другой вариант заключается в добавлении химических реагентов.

После установки заземления молниезащиты необходимо регулярно замерять его сопротивление. Если оно выходит за пределы нормативного значения, то придется добавить штырь или заменить на новый.

При этом нужно уделять пристальное внимание соединениям между элементами устройства. Использование нержавеющих материалов значительно увеличит срок службы заземлителя.

Суть шагового напряжения сводится к следующему. Стекающий по шине заряд от молниеотвода к заземлителю входит в грунт практически в одной точке, в которой создается самый высокий электрический потенциал, по мере удаления величина электрического напряжения сильно уменьшается. Человек, делая шаг вблизи шины, попадает в ситуацию, когда каждая нога находится под своим потенциалом. В результате от одной ступни к другой начинает течь ток, и человек получает сильнейший удар.

Поэтому первое требование эффективного молниеотвода относится к обустройству заземляющей части. Рассеивающий контур должен строиться по следующим правилам:

  • Конструкция заземления выполняется в виде замкнутого контура сечением не менее 4х4 см, чаще всего треугольной или прямоугольной формы с длиной стороны 1,5-2 м;
  • Контур приваривают к токоведущей шине только с помощью сварки. Если шина изготовлена из меди или алюминия, то на высоте не менее 30-40 см над уровнем грунта необходимо установить переходник «медь-сталь» или «алюминий-сталь»;
  • Глубина погружения контура составляет от 70 до 100 см, в зависимости от влажности и сопротивления грунта.

Куда чаще всего попадает молния

Очень интересный вопрос, имеет неожиданный ответ. Абсолютное большинство уверено, что молния всегда попадает в самое высокое здание, сооружение, дерево и т. д. Объяснение довольно простое – они ближе всех к тучам. Значит, высокий молниеотвод будет ловить все молнии и направлять их огромный электрический заряд в землю. На самом деле, в правильно смонтированный молниеотвод молния не должна попадать, именно для достижения таких результатов он и делается.

Молниеотвод защищает электропроводку дома

Молниеотвод защищает электропроводку дома

Почему ударяет молния? Во время трения между собой облаков образуются отрицательные заряды, в земле накапливаются положительные. При увеличении напряженности появляется так называемый ступенчатый лидер – относительно небольшой заряд, который двигается от облака к земле по пути наименьшего сопротивления.

Куда и почему попадает молния?

  1. Ствол дерева. Он влажный, поднимает положительные заряды высоко над землей и становится ближе к ступенчатому лидеру, двигающемуся от облака к земле.
    Молния ударила в дерево

    Молния ударила в дерево

  2. В высокие здания, если у них накоплено большое количество зарядов с земли. Но такое явление встречается довольно редко и только у специфических строений.
    Удар молнии в крышу дома

    Удар молнии в крышу дома

Эта зависимость всем понятна. Но почему молния чаще всего попадет около водоемов и рек хотя они расположены очень низко, а поблизости есть более высокие сооружения? Так происходит потому, что в этих местах очень влажная почва, а она накапливает и проводит максимальное количество зарядов. Ступенчатый лидер направляется не к высокому зданию на сухой почве, а к низинному болоту с большим количеством ионов. Еще один фактор, влияющий на частоту попадания молнии – наличие в земле металла. Это может быть руда или иные токопроводящие образования.

Молниеотвод целесообразно монтировать на зданиях, если они имеют хотя бы одну из нижеперечисленных особенностей:

  • располагаются на переувлажненных грунтах;
  • дома построены в промышленных зонах с большими запасами полезных ископаемых;
  • строения имеют металлические несущие каркасы, отлично подающие токи на верхние этажи сооружения.
Если здание располагается на переувлажненном грунте, стоит установить молниеотвод

Если здание располагается на переувлажненном грунте, стоит установить молниеотвод

Если ваш деревянный коттедж расположен на сухих песчаных грунтах, то вероятность попадания молнии фактически равняется нулю, никакой молниеотвод не нужен.

Задача молниеотвода - исключить удар молнии в кровлю

Задача молниеотвода — исключить удар молнии в кровлю

Если вам встречаются неграмотные или откровенно рекламные статьи на эту тему, то не стоит терять время на их прочтение. Ни один молниеотвод не украшает крышу и фасад здания, кроме того, монтаж устройств стоит существенных денег. И последнее. Чем больше элементов имеет молниеотвод – тем выше вероятность, что во время их установки повредится герметичность кровельного покрытия.

Типовые конструкции молниеотводов

Провод молниеотвода

Для защиты частного дома используется несколько видов молниеотводов, используемых при построении комплексной грозовой защиты.

Типовая схема такой защиты приведена на рисунке. В состав защиты входят:

  • Несколько приемных оголовков-штырей молниеотводов, рассредоточенных на наиболее уязвимых точках кровли;
  • Разводка токопроводящей шиной по коньковой балке, ветровым планкам и скатам кровли. Как показывает практика, молния нередко поражает массивные металлические поверхности, находящиеся ниже молниеотвода;
  • Система комплексного заземления, при этом контур от молниеотвода не должен соединяться с заземляющей линией электропроводки, в противном случае сгорит большая часть домашней техники;
  • Устройство для защиты домашней аппаратуры и электросети при ударе молнии в линию электропередач.

Нередко токопроводящая шина становится источником проблем для домашней электросети. Во время удара молнии по шине протекает мощный импульс тока, способный вывести из строя цифровую технику, мобильный телефон, компьютер или сетевое оборудование интернета.

Поэтому перед тем как сделать молниеотвод, будущую линию укладки шины нужно обязательно экранировать. Для этого используется металлическая сетка с ячейкой не более 5 мм. Если шину молниеотвода предполагается уложить по бетонной или кирпичной стене, то сетку укладывают под штукатурку, и изолируют от шины. К экранирующей сетке припаивается провод, который подключается через вентильную защиту к общей системе заземления, но не к контуру молниеотвода.

В общем случае, молниезащита зданий и сооружений представляет собой комплекс из молниеприемника, токопровода и заземлителя. Молниеприемники применяются в виде стержня, сети и натянутого троса.

Конструкция стержневой системы проста. Штырь молниезащиты соединяется с помощью токоотвода с металлическими штырями в грунте, обеспечивающими заземление.

Стержни (штыри) изготавливают из оцинкованной или омедненной стали высотой от полуметра до 5-7 метров. Диаметр зависит от высоты стержня и климатического района расположения. Омедненный стержень имеет лучшую электрическую проводимость по сравнению с оцинкованной сталью.

В зависимости от конфигурации здания и его кровли на крыше устанавливаются несколько стержней. Они крепятся к коньку, фронтону, вентиляционным колодцам и прочим капитальным конструкциям.

Зона влияния молниезащиты представляет собой конус с вершиной на острие молниеотвода. Стержни располагают таким образом, чтобы зоны их действия перекрывали все здание. Для стержневых молниеприемников правило защитного конуса с 90 градусной вершиной справедливо для стержня высотой до 15 м. Чем выше молниеприемник, тем меньше угол вершины защитного конуса.

Молниеприемная сеть представляет собой оцинкованный или омедненный провод диаметром 8-10 мм, покрывающий в виде сети всю крышу здания. Обычно молниезащиту в виде сетки устанавливают на плоские кровли.

Предлагаем ознакомиться  Почему помидоры не краснеют в теплице: что делать чтобы быстрее спели, что сделать если плохо томаты наливаются

Сеть формируется за счет перпендикулярно расположенных относительно друг друга проводов с определенным шагом. При помощи держателей провода соединяются между собой и крепятся к кровле. Иногда, вместо провода используют стальную полосу.

Провод или полоса обязательно должны быть соединены с заземлением. Для соединения применяют сварку, но можно его делать специальными зажимами. Зажимы для соединения электродов заземления с проводниками часто идут в комплекте, если приобретать все детали в специализированном магазине.

Тросовые молниеприемники представляют собой стальной или алюминиевый трос, натянутый между двумя мачтами. Мачты соединены с токоотводов, а тот в свою очередь с заземлением. Представьте, что трос является коньком двускатной крыши.

Тогда область под этой виртуальной крышей будет находиться под защитой от ударов молний. Таким образом, натянув над крышей дома и прилегающей территорией несколько тросов можно обеспечить надежную молниезащиту.

Токопроводы представляют собой оцинкованные или омедненные стальные провода диаметром 10 мм, часто применяют и стальные полосы сечением 40х4 мм покрытые цинком или медью. Они соединяют молниеприемники с заземлителем.

Устройство громоотвода
Рисунок 1: устройство громоотвода

Вся конструкция громоотвода представлена тремя элементами: молниеприемником, токоотводом и заземлителем. В зависимости от местных условий и ваших предпочтений каждый из них может иметь различное исполнение. Теперь разберем, зачем каждый из них нужен, и какой вариант выбрать в той или иной ситуации.

Молниеприемник

Из самого названия данного элемента происходит его назначение, по факту он выполняет роль электрода, принимающего электрический разряд молнии. Основной критерий для него – хорошая проводимость и термическая устойчивость, так как величина тока может достигать 100 – 200 кА, которая запросто пережжет тонкие проводники. В качестве молниеприемника могут устанавливаться:

  • стержневые конструкции;
  • решетка;
  • трос;
  • сама поверхность крыши.

Стержневые молниеприемники могут устанавливаться как непосредственно на самой крыше, так и на специальной металлической мачте. При этом их высота должна обеспечивать необходимую зону защиты для всех конструкций постройки.  Поэтому такой молниеприемник актуален для зданий с небольшой площадью и высотой.

Стержневой молниеприемник
Рис. 2: стержневой молниеприемник

Такие стержневые устройства могут быть медными, алюминиевыми или стальными. Первые два обладают хорошей устойчивостью к коррозионному разрушению, благодаря чему такой громоотвод практически не теряет проводимости и сечения даже при длительной эксплуатации. Металлический штырь из стали, в отличии от двух предыдущих, куда менее подвержен оплавлению от протекания больших токов, из-за чего он куда лучше подходит для местности с частыми ударами молнии.

Сетчатый молниеприемник
Рис. 3: сетчатый молниеприемник

Решетка в качестве молниеприемника используется для большой площади, к примеру, многоэтажных домов или торговых центров. В отличии от предыдущего варианта, она не влияет на дизайн постройки, поэтому может применяться в любых современных экстерьерах. Такой громоотвод должен иметь заданное сечение и размер ячеек, как правило, выбирается  арматура не менее  6 мм2. Ее монтаж выполняется на безопасном расстоянии от крыши (не менее 15 см) через термоизолирующие несущие конструкции.

Тросовый молниеприемник
Рис 4: тросовый молниеприемник

Тросовый громоотвод представляет собой гибкий провод, который растягивается над защищаемой территорией или постройкой. Позволяет защитить длинный участок при меньших затратах материалов на громоотвод. Выполняется как на отдельно стоящих опорах, так и на крыше дачной постройки. В первом случае опоры устанавливаются в начале и конце участка, а во втором, в начале и конце крыши.

Если в качестве кровельного материала применяются токопроводящие варианты (профнастил, металлочерепица и прочие), их можно использовать в качестве молниеприемника для громоотвода. Но при этом должны соблюдаться такие условия:

  • толщина металлического слоя не менее 4 мм для стали, 5 мм для меди или 7 мм для алюминия;
  • под кровельным материалом отсутствуют легко воспламеняющиеся материалы (утеплители, стропила и т.д.);
  • снаружи металл не покрыт диэлектрическим материалом.

Провод молниеотвода

Изготовление  громоотвода из металлической кровли позволяет сэкономить средства на молниеприемнике.

Токоотвод

Представляет собой проводник, отводящий электрический ток от молниеприемника к заземлителю. Может выполняться из металлической проволоки или шины.  Должен иметь сечение не менее 16 мм2, если изготовлен из меди, 25 мм2 из алюминия, 50 мм2 из стали. К токоотводу предъявляются такие требования:

  • Должен изолироваться от стен и других конструкций дома;
  • Для него выбирается наикратчайший путь протекания тока;
  • Отсутствие изгибов и витков, на которых может произойти пробой воздушного промежутка;
  • Достаточная проводимость в местах электрических соединений.

При необходимости токоотвод изолируется от поверхности дома при помощи кабельного канала или любым другим способом. Особенно актуальна такая процедура для зданий с токопроводящей отделкой или горючей поверхностью.

Заземлитель

Изготавливается в виде заземляющего контура, который закапывается в грунт. В качестве материала применяются стальные или медные элементы, которые закапываются в землю. Формируется из арматуры или шины, требования к которым устанавливаются п.1.7.111 ПУЭ и приведены в Таблице 1

Таблица 1

Материал Профиль сечения Диаметр,
мм
Площадь поперечного сечения, мм Толщина
стенки, мм
Сталь Круглый:
черная для вертикальных заземлителей; 16
для горизонтальных заземлителей 10
Прямоугольный 100 4
Угловой 100 4
Трубный 32 3,5
Сталь Круглый:
оцинкованная для вертикальных заземлителей; 12
для горизонтальных заземлителей 10
Прямоугольный 75 3
Трубный 25 2
Медь Круглый: 12
Прямоугольный 50 2
Трубный 20 2
Канат многопроволочный 1,8* 35

Все детали заземляющего контура могут как закольцовываться и формировать замкнутую цепь,  так и выстраиваться в сплошную линию. Разумеется, что замкнутый вариант считается более надежным. Размеры контура подбираются в зависимости от местных условий.

Пример установки заземлителя
Рис. 5: пример установки заземлителя

Основное требование к заземляющему контуру – обеспечение установленной величины переходного сопротивления металл – земля, поэтому его лучше располагать в влажном слое, периодически поливать водой или обрабатывать материалами, уменьшающими переходное сопротивление и увеличивающими площадь тока растекания (древесный уголь и соль). Согласно п.1.7.103 ПУЭ сопротивление должно быть не более 5, 10 и 20 Ом для сетей с фазным напряжением 380, 220 и 127 В соответственно.

Расположение заземлителя делается не ближе 1 м от стен и 8 м от пешеходных дорожек. Так как в этой точке возникает шаговое напряжение, способное нанести удар током любому, кто находится в радиусе зоны поражения, поэтому приближаться к контуру во время грозы категорически запрещено, как и прикасаться к его токоведущим элементам.

Из каких элементов состоит молниеотвод

Молниезащита и заземление

Вне зависимости от размеров, технических данных и места монтажа все конструкции состоят из общих элементов.

Элемент молниеотвода Назначение и краткое описание
Молниеотвод Кусок катанки или иного металлического штыря, возвышающегося над крышей.
Проводники тока Проволока диаметром не менее 5 мм, соединяет между собой молниеотвод и заземление.
Заземление Самый важный технический элемент молниеотвода. Собирает из земли положительные ионы и по проводникам и молниеотводу отводит их в атмосферу. Именно от эффективности заземления зависит надежность функционирования молниеотвода.

Варианты построения защиты от удара молнии

Установка мачты с молниеотводом позволяет защищать большую часть придомовой территории. Для загородных дачных участков схема защиты от удара молнии не решает всех проблем. Особенно если учесть, что расстояние между постройками может составлять 40-50 м, высота защитной мачты в этом случае должна достигать нереальных 40-60 м. Поэтому все загородные постройки в обязательном порядке приходится оборудовать своими молниеотводами и системами защиты от ударов молнии.

Провод молниеотвода

Простейшая схема молниеотвода приведена на следующем рисунке.

Штырь или оголовок молниеотвода устанавливают на кирпичную трубу. Общая высота молниеотвода в верхней точке должна равняться величине диагонали коробки дома, умноженной на коэффициент 1,2.

Важно! Контур заземления молниеотвода должен находиться на расстоянии не менее 4-5 м от пешеходных дорожек или входа в дом.

Заземляющую шину пропускают по ветровой планке и «слепому» ребру здания. Если есть возможность, то шину лучше всего пустить в навесном варианте без крепления к коробке дома.

Для построек удлиненной формы приходится использовать защиту от удара молнией из нескольких штырей или устанавливать проволочный вариант молниеотвода, как на фото.

В этом случае молниеотводы устанавливаются только на фронтонах, а между ними натягивается толстая стальная проволока или трос, диаметром не менее 8 мм. Чтобы ветер не раскачивал систему молниеотвода, провод натягивают с помощью двух боковых подвесов из керамических изоляторов и пластиковых шнуров. Использование изоляторов обеспечивает правильную работу молниеотвода, без них электрический заряд от удара молнии способен стекать на землю по намокшему от дождя капроновому канату.

Третий вариант молниеотвода применяется для защиты кровельного покрытия крыши от прямого попадания молнии. Зачастую длина скатов крыши может превышать высоту дома в два и более раз, поэтому часть кровельного покрытия оказывается за пределами защищаемого круга. Если устанавливать дополнительные штыри по карнизу и на свесах, то это решит проблему, но серьезно повлияет на внешний вид здания, поэтому вместо штыревого молниеотвода устанавливают сетчатый.

Схема мало чем отличается от предыдущего варианта, в дополнение к тросу и стальным стержням на скатах закрепляют с шагом 4-6 м несколько горизонтальных и вертикальных ниток толстой многожильной проволоки. Если кровля изготовлена из металла, сетку молниеотвода нужно обязательно изолировать от металлической поверхности с помощью резиновых прокладок.

Предлагаем ознакомиться  Необычные и доступные упаковки для новогодних подарков, которые легко сделать своими руками (45 фото)

При ударе молнии диаметр пятна теплового поражения достигает 15-20 см, поэтому прямое попадание лидера, например, в металлочерепицу приведет к воспламенению обрешетки и гидроизоляции крыши.

Выполняем монтаж штыревого приемника и шины

Самая простая конструкция оголовка молниеотвода выглядит, как обычный кусок арматуры с заостренным кверху концом. Считается, что острые края способствуют возникновению разряда и большей эффективности молниеотвода, но на практике особых преимуществ в защите от удара молнии перед обычными штырями не наблюдалось.

Оголовок молниеотвода может выполняться в виде нескольких штырей, закрепленных в одной раме и даже в виде сетчатого каркаса. Некоторые конструкции молниеотводов позволяют в ночное время наблюдать интересное явление – при приближении грозы на остриях начинают зажигаться крошечные разряды молний. Это означает, что скоро будет гроза.

Штырь молниеотвода нужно соединить с токоведущей шиной еще до его установки на крыше. Высота стержня молниеотвода должна быть как минимум на 100-120 см выше верхней точки рядом стоящих дымоходов и вентиляционных труб. Можно взять обычную водопроводную трубу ¾ дюйма, длиной не менее двух метров.

В верхней части молниеотвода отверстие заваривается сваркой, если токоотводящая шина планируется из меди или алюминия, то проще всего использовать электротехнический переходник, позволяющий надежно соединять два контакта из разнородных металлов. Если просто закрепить медную проволоку на стальном штыре, через две-три недели из-за электрохимической коррозии место крепления окислится, и защита от ударов молнии перестанет работать. Молниеотводы и шины промышленного изготовления никогда не красят, металл фосфатируется и покрывается слоем никеля.

Разумеется, увеличенное сопротивление на контакте в месте крепления медной шины к стальной трубе не в состоянии остановить сверхсильный удар молнии, но речь идет о другом. Положительно заряженные частицы, которые скапливаются вокруг штыря молниеотвода во время грозы, из-за отсутствия контакта на шине будут перетекать на дымоход и козырьки вентиляции на крыше.

В результате удары молнии будут попадать в дымоход, в кровлю и в шину, но не в штырь молниеотвода. Эффект ионизации воздуха вокруг молниеотвода имеет и другие негативные последствия. Прежде всего, шина и крепление молниеотвода под воздействием ионов и влажного воздуха корродирует в 5-10 раз быстрее, чем обычный металл.

После сварки штыря и шины молниеотвода их следует закрепить на крыше. Лучше всего это сделать с помощью хомутов или анкерными болтами. Нужно только следить, чтобы рядом с шиной не оказалось других проводящих деталей, например, кабеля от антенны или ограждения крыши. Не стоит крепить шину молниеотвода на неоштукатуренный кирпич или железобетонную плиту. Удар молнии, как правило, быстро разрушает оба материала.

зона защиты стержневого молниеотвода

Прежде чем закрепить молниеприемник, нужно установить шину на стены и крышу дома. Главное, чтобы рядом не оказался ввод электросети от ближайшей линии электропередачи. При ударе молнии дуга может проскочить от шины к фазовому проводу, даже если они удалены друг от друга на пару десятков сантиметров.

Если после грамотного анализа данных об участке, на котором расположено строение, принимается решение о целесообразности монтажа молниеотвода, то к выполнению работ следует подготовиться.

Шаг 1. Подсчитайте количество элементов, размеры здания, длину проводов и купите комплект оборудования.

Расчет молниеотвода

Расчет молниеотвода

Шаг 2. Закрепите на конек кровли держатели токоотвода.

Крепление держателя токоотвода

Крепление держателя токоотвода

Они фиксируются металлическими регулируемыми скобами, сами держатели проводов пластиковые со специальными зажимами. Держатели поддеваются лапками к нижней части конька, а двумя винтами фиксируется выбранное положение.

Расстояние между элементами примерно один метр

Расстояние между элементами примерно один метр

Шаг 3. Закрепите в держателях токоотвод.

Размещение токоотвода

Размещение токоотвода

Для этого следует использовать проволоку диаметром не менее 0,5 мм. Старайтесь ее максимально выравнивать, не допускайте касания металлом конька, токоотвод должен свободно висеть над кровлей.

Шаг 4. Загните концы проволоки под углом 45°.

Загиб окончаний токоотвода

Загиб окончаний токоотвода

Как утверждают производители, за счет этого значительно увеличивается площадь покрытия молниезащиты. Но это некорректное утверждение, выше в этой статье мы уже объясняли, что устройство не притягивает молнии, а наоборот, создает условия, чтобы они в этом месте не появлялись. Защитный эффект достигается за счет вывода ионов из земли во влажный воздух, во время дождя он имеет свойство проводить электрические заряды.

Шаг 5. После того как проволока установлена на коньке, следует приступать к монтажу держателей токоотвода под черепицу.

Установка держателей токоотвода под черепицу

Установка держателей токоотвода под черепицу

В зависимости от пожеланий клиента компании выпускают несколько видов держателей: с прямым крючком, со скрученным крючком и со специальным металлическим держателем. Для того чтобы закрепить приспособления на обрешетке, следует аккуратно демонтировать черепицу. Сколько штук – зависит от ее размеров, но для большинства видов достаточно одной. Монтаж держателей на скатах – довольно сложные работы, надо все делать очень внимательно и со знанием дела.

Расстояние между элементами также примерно один метр

Расстояние между элементами также примерно один метр

Шаг 6. Прикрутите к центральному коньковому токоотводу боковые, установленные на скатах. Для этого нужно пользоваться специальными металлическими зажимами.

Установка токоотвода на держатели

Установка токоотвода в держатели

Фиксирование зажимами

Фиксирование зажимами

Шаг 7. Установите специальные держатели на поверхность кирпичного дымохода.

Монтаж держателя молниеприемника

Монтаж держателя молниеприемника

Эти элементы крепятся по принципу дюбелей. Вначале высверливаются отверстия в кладке, затем в них вставляются пластиковые элементы и только потом закручиваются металлические держатели. Все подсоединения проволоки выполняются лишь при помощи специальных зажимов.

Установка молниеприемника

Установка молниеприемника

Шаг 8. Закрепите на фасадные стены пластиковые держатели. Надо предусматривать самое незаметное место, желательно с обратной стороны здания. Расстояние между держателями примерно 1 м, способ крепления к стене зависит от материала ее изготовления. Имейте в виду, что контрольный зажим должен располагаться на высоте 70 см от уровня земли. К контрольному зажиму присоединяется плоская токоотводящая шина заземления.

Установка держателей

Установка держателей

Расстояние между креплениями и варианты крепежа

Расстояние между креплениями и варианты элемента

Закрепление токоотвода

Закрепление токоотвода

Контрольный зажим

Контрольный зажим

Для того чтобы максимально спрятать провода и улучшить внешний вид здания, рекомендуется проволоку проводить по системе водоотвода. Как это делается?

  1. Установите держатель на желоб водостока. Он представляет собой изогнутую пластину шириной 3 см, один конец ее лежит на кровле крыши, а второй на краю желоба. Специальный верхний зажим фиксирует проволоку.
  2. Закрепите хомуты-держатели на водосточных трубах. Прикручивать их следует у каждого поворота системы водоотвода, а сами держатели должны располагаться с одной стороны. Расстояние между элементами примерно один метр.
  3. Установите токоотводы в хомуты, сильно зажмите их болтами.
Способ крепления токоотвода к водосточной системе

Способ крепления токоотвода к водосточной системе

Держатель водосточных труб, крепление

Держатель водосточных труб, крепление

На этом монтаж наружной части молниезащиты закончен. Можно приступать к изготовлению заземления.

Параметры зоны защиты стержневого молниеотвода

Именно от этого элемента зависит эффективность устройства, во время выполнения работ следует строго выполнять рекомендации электриков. Они должны рассчитать параметры заземления в зависимости от физических характеристик грунтов, глубины залегания грунтовых вод, размеров и назначения здания.

Шаг 1. Прокопайте траншею длиной примерно один метр и глубиной 50 см, в ней будет лежать шина заземления.

Траншея

Траншея

Шаг 2. Присоедините к контрольному зажиму токоотводящую шину. Мы уже упоминали, что он располагается на высоте 70 см от земли. Токопроводящая шина – металлическая полоса шириной примерно 2 см и толщиной не менее 2 мм. Шина фиксируется при помощи специальных держателей. Они устанавливаются на фасадные стены и цоколь, способ крепления выбирается мастером на месте с учетом индивидуальных факторов фасадных стен здания.

Монтаж фасадного держателя для полосы

Монтаж фасадного держателя для полосы

Фасадный держатель

Шаг 3. Согните полосу буквой «Г» и установите ее на дно предварительно выкопанной траншеи.

Монтаж полосы на глубину 0,5 метра

Монтаж полосы на глубину 0,5 метра

Шаг 4. После того как все подготовлено, можно ставить на место контрольно-измерительный колодец. Если его размеры превышают ширину траншеи, то ее придется немного расширить.

Установка контрольно-измерительного колодца

Установка контрольно-измерительного колодца

Шаг 5. Согласно прилагаемой производителем инструкции соберите комплект штырей заземлителя, наденьте на них муфты для присоединения дополнительных элементов.

Наименование элементов

Наименование элементов

Сборка элементов

Сборка элементов

Производители настоятельно рекомендуют во время сборки комплекта использовать электропроводящую смазку для защиты контактов от ржавчины и специальную ленту, предотвращающую коррозионные процессы на поверхностях штырей, засыпанных землей. Их следует очень плотно и аккуратно обмотать, наличие пропусков и перегибов запрещается.

Соединение комплекта штырей и насадки

Соединение комплекта штырей и насадки

Схема соединения

Схема соединения

Заключение

Заземление – главный элемент молниеотвода. Оптимальный вариант закопать металлическую плиту площадью не менее 2 м2 и толщиной 1 см на глубину 1,5–2,0 м. Использование металлических прутков намного уменьшает эффективность конструкции.

Но есть еще одна проблема – многие забивают в землю не несколько соединенных между собой металлических штырей, а только один. Если заземление выполнено небрежно, металлический пруток один, забит в сухом месте и недостаточно глубоко, то эффективность даже самой дорогой и сложной конструкции на крыше равняется нулю.

Правильное заземление

Правильное заземление

Монтировать молниеотвод рекомендуется только тогда, когда есть полная уверенность в такой необходимости. Выполнять все работы следует с безусловным соблюдением требований нормативных документов.

Молниеотвод не обязательно делать своими руками, можно приобрести в готовом виде и установить. Многие компании выпускают системы защиты от ударов молний в комплекте с шинами и устройствами блокирования бытовой аппаратуры. Некоторые из них имеют встроенные датчики напряженности поля на шине, что позволяет узнавать о приближении грозы за полчаса до ее начала.

Часть молниеотводов выполняют в виде декоративных фигур из металла, зажигающихся огоньками при ударе молнии. Но есть и немало случаев откровенного шарлатанства. Например, в рекламе одной из фирм предлагалась миниатюрная модель с покрытием из специального магнитного сплава, притягивающего молнии к оголовку. Понятно, что такие молниеотводы ради собственной безопасности стоит обходить стороной.

Поделиться
Похожие записи
Комментарии:
Комментариев еще нет. Будь первым!
Имя
Укажите своё имя и фамилию
E-mail
Без СПАМа, обещаем
Текст сообщения
Adblock detector